Mehrfachpolyeder


Die hier dargestellten Mehrfachpolyeder kann sie sich auf folgende Weise konstruiert denken:
Man stelle sich mehrere Kopien eines regulären Polyeders in identischer Lage vor. Jede Kopie wird nun um jeweils eine Symmetrieachse gedreht, der Drehwinkel beträgt die Hälfte der Identitätsdrehung..
Z.B. hat ein Würfel 4 dreizählige Drehachsen. Man stellt sich also 4 Kopien vor. Jede dieser Kopien wird um 60 Grad gedreht. Danach wird der nicht gedrehte Originalwürfel entfernt.
Für den Würfel und seine 3 4zähligen Achsen wurde diese Konstruktion meines Wissens erstmals von M. C. Escher dargestellt ("Wasserfall", Nr. 76). In der gleichen Graphik taucht auch die entsprechende Konstruktion (4zählige Achsen) für den Oktaeder auf, allerdings in gestauchter Form. Mit korrekten Oktaedern findet sie sich in "Sterne" (Nr. 61).
In folgendem Link:
http://www.math.nus.edu.sg/aslaksen/projects/cwh-urops.pdf
finden sich auch die Figuren mit 4 Würfeln bzw. Oktaedern.
Die Abbildungen (siehe Links auf der linken Seite) für Oktaeder, Würfel und Tetraeder wurden anhand von Pappmodellen gemacht, die nicht immer ganz präzise berechnet sind. Die Berechnungen wurden von mir in den 70er Jahren mit einem Rechenschieber und meinen Schulkenntnissen der Vektorrechnung ausgeführt. Deshalb habe ich auch keine Modelle der entsprechenden Konstruktionen für Dodekaeder und Ikosaeder gemacht. Zeichnerische Lösungen existieren jedoch und werden hier ebenfalls präsentiert.
Das Modell mit den 6 Tetraedern basiert auf der Einbeschreibung von Tetraederpaaren in den Würfel-Drilling.